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Abstract
We investigate the question of determining the bulk properties of liquids, required as input for
practical applications of the density functional theory of inhomogeneous systems, using density
functional theory itself. By considering the reference functional approach in the test particle
limit, we derive an expression of the bulk free energy that is consistent with the closure of the
Ornstein–Zernike equations in which the bridge functions are obtained from the reference
system bridge functional. By examining the connection between the free energy functional and
the formally exact bulk free energy, we obtain an improved expression of the corresponding
non-local term in the standard reference hypernetted chain theory derived by Lado. In this way,
we also clarify the meaning of the recently proposed criterion for determining the optimum
hard-sphere diameter in the reference system. This leads to a theory in which the sole input is
the reference system bridge functional both for the homogeneous system and the
inhomogeneous one. The accuracy of this method is illustrated with the standard case of the
Lennard-Jones fluid and with a Yukawa fluid with very short range attraction.

1. Introduction

For practical applications, the density functional theory
(DFT) of inhomogeneous systems often requires as input
the bulk structural and thermodynamic quantities, especially
for fluids with attractive contributions to the interaction
potential. It is thus important to have a theory that treats
the homogeneous system and the inhomogeneous one in a
consistent way. In this respect, the DFT, originally developed
for inhomogeneous systems, can be turned into a powerful
tool for the determination of the structural properties of the
uniform fluid, following an idea due to Percus [1]. In this
so-called test particle limit, one considers that the source
of the inhomogeneity is one of the particles of the fluid,
whose position is taken as the origin. The density profile
of the fluid in the external potential created by the test
particle is then equal to the bulk density times the radial
distribution function ρ(r) = ρbg(r). The equation for the
density profile of the inhomogeneous fluid follows from the
fundamental property of the grand potential functional that it
should be minimal at equilibrium (for a general introduction

to DFT for classical fluids, see, for example, the review by
Evans [2]). Thus, in the test particle limit the condition of
minimal grand potential leads to an equation for g(r) that
is equivalent to a closure relation for the Ornstein–Zernike
(OZ) equations. In this way, the connection with the integral
equations theory (IET) for the correlation functions, which
has its foundation in their diagrammatic expansion [3], is
established. The so-called bridge function which appears
in the diagrammatic analysis can then be defined formally
as the functional derivative of a bridge functional within
the test particle consistent DFT route. In this way, the
process of finding approximate closures of the OZ equations
is turned into the problem of finding sensible approximations
to the bridge functional. This combination of DFT and
IET became truly operational after the development of the
fundamental measure functional for the hard-sphere (HS)
mixture by Rosenfeld [4]. Quite analogously to the universality
hypothesis formulated in the context of the pure IET by
Ashcroft and Rosenfeld [5], one may invoke the universality
of the bridge functional to apply the test particle consistent
DFT to interactions other than the hard-sphere potential. In
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this scheme, instead of using the bridge function of a reference
system for all interaction potentials, as in the so-called
reference hypernetted chain (RHNC) approximation [6, 7],
one uses the reference system bridge functional FB[ρ].
Besides its application to the HS mixture [8], this method
has proved to be a versatile tool for studying the Lennard-
Jones (LJ) fluid [9], slightly asymmetric mixtures with various
interactions [10], the potential of mean force for colloids in
the bulk [11] and in confined geometry [12, 13], up to the
drying phenomenon [14] and spherically averaged anisotropic
potentials [15]. In these studies, this method was referred to
by different designations. In this general reference functional
approach, we will designate the replacement of the unknown
bridge functional FB[ρ] by that of the reference system
FB,ref[ρ] as the reference functional approximation (RFA). As
in the RHNC [16], an important question is the determination
of the parameters of the reference system (which are, for
example, the particle diameters in the case of a reference
HS mixture). In [14] a practical and efficient criterion was
proposed to this end. It was shown to be equivalent in
practice to Lado’s criterion [16]. In this work, we examine
in detail the meaning of this criterion and its connection with
Lado’s one. Besides this, a central point is the availability of
usable expressions of the thermodynamic quantities, especially
for studying inhomogeneous systems. The RFA shares with
its parent approximation—the RHNC—the existence of local
expressions of the free energy and chemical potential. The
calculation of the equivalent in the inhomogeneous fluid—the
insertion free energy—has been illustrated recently by one of
us [14] who studied the adsorption of an LJ fluid at a wall. The
connection between the RFA bulk free energy and the formally
exact expression of the RHNC one will allow us to propose
an expression that improves Lado’s treatment of the non-local
term. This also yields a more consistent determination of
the HS diameter. The ensuing improved treatment of the
thermodynamic quantities is expected to yield better results
in the treatment of extreme potentials, such as the effective
interaction potential in highly asymmetric colloidal mixtures,
for example.

This paper is organized as follows: we give a brief
summary of the reference functional approach in section 2. We
present and discuss the numerical results for the Lennard-Jones
and the Yukawa fluids in section 3. A general conclusion is
given in section 4.

2. Reference functional approach

2.1. General outline

The starting point of the reference functional approach consists
in devising a suitable approximation for the excess free energy
functional Fex[ρ] for an inhomogeneous fluid whose particles
are subject to an external potential Vi (r) (in what follows, F[ρ]
designates a functional of the inhomogeneous density ρ(r)
whereas a(ρ), for example, will instead designate a function
of the density). In a mixture, ρ(r) may correspond to a set of
densities {ρi (r)}. When the inhomogeneity is created by a test
particle t at the origin, ρi (r) = ρi git(r), where ρi is the density

far from the test particle and git(r) is the distribution function
for the pair (i, t).

From the intrinsic free energy functional F[ρ], one defines
the excess functional Fex[ρ] with respect to the ideal gas part
by

F[ρ] ≡ 1

β

∑

i

∫
dr ρi(r)(ln ρi (r)�3

i − 1) + Fex[ρ]. (1)

Useful approximations are obtained starting with the functional
Taylor expansion of Fex[ρ] about some reference density
ρ0. The coefficients of the expansion are the n-body direct
correlation functions c(n) for species k, . . . , l, defined by
c(n)

k...,l(r1, . . . , rn) = − δ(n)βF ex[{ρi (r)}]
δρk (r1)···δρl(rn)

(with β = 1/kBT ),
evaluated for ρ0(r). The contributions up to second order in
the density difference �ρi(r) = ρi(r)−ρi,0(r) are collected in
the contribution F (2)[ρ], usually referred to as the hypernetted
chain (HNC) functional:

F (2)[ρ] = Fex[ρ0] − 1

β

∑

i

∫
dr c(1)

i (r, ρ0)�ρi (r)

− 1

2β

∑

i, j

∫
dr dr′c(2)

i, j (r, r′, ρ0)�ρi (r)�ρ j (r′) (2)

and the terms beyond second order define the bridge
functional [4]:

FB[ρ] ≡ Fex[ρ] − F (2)[ρ]. (3)

The partitioning of Fex into an HNC and a bridge contribution
becomes transparent when the external potential is created by
the test particle t at position r0 such that Vi (r) = φit (r − r0)

(φit is the pair potential acting between particles of species i
and t). Then, minimization of the grand potential �[ρ] =
F[ρ] − ∑

i

∫
dr ρi (r)(μi − Vi(r)) in conjunction with the use

of the OZ relation leads to the general closure relation between
the pair correlation function git = hit + 1 and the direct
correlation function c(2)

it :

ln git(r, r0) + βφit(r − r0) = hit (r, r0) − c(2)

it (r, r0)

− bit (r, r0) (4)

bit(r, r0) = β
δFB

δρi(r)

∣∣∣∣
ρi =ρ0gi j

. (5)

Thus, FB serves as the generating functional for the bridge
functions bit known from standard diagrammatic analysis [3]
as recalled above. Equations (1)–(3) remain, however, mere
definitions, until one has some prescription for this bridge
functional. In the reference functional approximation, one
replaces FB by the bridge functional of a reference system,
FB,ref, for which Fex,ref (and hence also F (2),ref) are known:

FB,ref[ρ] ≡ Fex,ref[ρ] − F (2),ref[ρ]. (6)

In practice, the hard-sphere mixture is very often used as the
reference system. For hard spheres, there indeed exist accurate
and robust approximations for Fex,ref, such as the fundamental
measure functional (FMF) [4] and its variants [17–20]. Fex,ref

is then taken as Fex,HS[{ρi(r)}] = kBT
∫

dx 	[{nα(x)}], where
{nα(x)} is a set of weighted densities constructed from the
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actual densities {ρi (r)} and weight functions ω
(α)

i as nα(x) =∑
i ρi ⊗ ω

(α)
i where ⊗ designates a convolution product (see

appendix B for explicit expressions). From Fex,ref[ρ], one
can evaluate explicitly the coefficients c(1),ref

i and c(2),ref
i j of

the functional F (2),ref (one-and two-particle direct correlation
functions) and thus determine FB,ref. The excess free energy in
this RFA is thus

Fex[ρ] � F (2)[ρ] + FB,ref[ρ]. (7)

An alternative expression that will be useful later is
obtained by adding and subtracting, in equation (7), the excess
free energy functional for the reference system Fex,ref[ρref(r)],
evaluated with the reference density ρref(r):

Fex[ρ] � Fex,ref[ρref] + (F (2)[ρ] − F (2),ref[ρref]) + �FB,ref

(8)
where

�FB,ref ≡ FB,ref[ρ(r)] − FB,ref[ρref(r)]

is the change in the reference bridge functional when evaluated
with the reference system density and with that of the actual
system. Here, ρref(r) stands for the reference system density
profiles obtained in the test particle limit by solving the
Ornstein–Zernike equation, with the closure corresponding to
the interaction potentials φref

it in the reference system (for a one-
component system, for example, ρref(r) = ρgref(r)).

In order to use these equations, the parameters of the
reference system—for hard spheres the diameters—must be
specified. In [14], one of us suggested to use the last
term �FB,ref in equation (8). In the bulk test particle limit
(i.e. where ρ0 in equation (2) is given by a set of bulk
densities {ρi}), the optimum hard-sphere diameters are those
that minimize �FB,ref at fixed ρi(r) and ρref

i (r): �FB,ref =
FB,ref[{ρi git(r)}] − FB,ref[{ρi gref

it (r)}]. For a one-component
system with bulk density ρ, this is [14]

∂

∂d
(FB,ref[ρg(r); d] − FB,ref[ρgref(r); d]) = 0. (9)

In this equation, only the explicit dependence of the
coefficients of the functional FB,ref on the diameter d must
be considered, not the implicit one through the arguments
g(r) and gref(r). The reason for this will become clear in
section 2.2. Calculations [14] for the Lennard-Jones fluid
gave nearly the same results as those obtained from the
Lado criterion [6] for the optimum diameter in the reference
hypernetted chain (RHNC) approximation for the free energy,
FRHNC. However, the question of the physical meaning of the
criterion (9) was left open [14]. We proceed now to show
how the functional (8) is related to FRHNC [6] and hence
how the criterion (9) is related to Lado’s criterion [16], for
homogeneous fluids.

2.2. Relation with the RHNC free energy

In order to establish this relation and clarify the meaning of
the criterion in equation (9), we start with the formally exact

expression of the free energy in the RHNC theory of Lado [6]
and Lado et al [7]. The free energy of a homogeneous system
can be obtained following the standard charging process
method [6, 7]. In this process, one moves from the reference
system (with potential φref), whose properties are assumed
known, to the actual system (potential φ) by following a linear
path defined by a charging parameter λ: φλ(r) = φref(r) +
λ(φ(r)−φref(r)). The exact free energy (with a(ρ) ≡ β A

N the
reduced free energy per particle in the homogeneous fluid of
density ρ) can then be written as (equation (14) in [7])

a = a1 + a2 + a(0)
3 + �a3 (10)

or equivalently as

a = aref + (a1 − aref
1 ) + (a2 − aref

2 ) + �a3 (11)

with a(0)

3 = aref − aref
1 − aref

2 . In this last expression, aref

is assumed known and a1(aref
1 ) and a2(aref

2 ) are expressible
in terms of the correlation functions of the actual and of the
reference system (equations (11a) and (11b) in [7] recalled in
appendix A). The only unknown term is the last one:

�a3 = 1

2
ρ

∫
dr

∫ 1

0
dλ bλ(r)

∂

∂λ
gλ(r) (12)

(with a similar expression holding for a(0)
3 , if one would

consider the free energy of the reference system itself as being
generated via a charging process starting from the ideal gas). In
this expression, gλ(r) is the radial distribution function for the
potential φλ(r) and bλ(r) is the corresponding bridge function.
These quantities are related by the RHNC closure:

gλ(r) = exp{−βφλ(r) + hλ(r) − cλ(r) − bλ(r)} (13)

of the Ornstein–Zernike equation hλ = cλ + ρcλ ⊗ hλ. Note
the convention that bλ(r) is used in (13) with a minus sign.

The link between the RHNC and the RFA is established
by recalling the defining relation (5) for the bridge function,
evaluated for a single-component bulk system:

bλ(r) = β
δFB[ρ(r)]

δρ(r)

∣∣∣∣
ρλ(r)=ρgλ(r)

. (14)

Within the RFA, FB = FB,ref, and the reference bridge
functional FB,ref does not depend explicitly on the charging
parameter λ by construction, thus3

d

dλ
FB,ref[ρ(r)] =

∫
dr

δFB,ref

δρ(r)

∣∣∣∣
ρλ(r)=ρgλ(r)

ρdgλ

dλ
. (15)

Using this result, the integration on λ in the unknown term
�a3 (equation (12)) follows immediately and the free energy
becomes

aRFA = aref + (a1 − aref
1 ) + (a2 − aref

2 ) + β

2
�FB,ref. (16)

3 Equivalently, for a functional FB that is a unique functional of the density,

the integration of the relation b(r) = δβFB [ρ(r)]
δρ(r) is [2, 21]

βFB,ref[ρg(r)]=βFB,ref[ρgref(r)] +
∫ 1

0
dλ

∫
dr bλ(r)

∂ρgλ(r)

∂λ
.

Within the RFA FB = FB,ref depends indeed on λ only through ρgλ(r) and
not explicitly.

3
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On the other side, the usual RHNC free energy is obtained by
putting bλ(r) ≈ bref(r) (independent of the charging parameter
λ) in equation (12) and hence

aRHNC = aref + (a1 − aref
1 ) + (a2 − aref

2 )

+ ρ

2

∫
dr(g(r) − gref(r)) bref(r). (17)

In these equations, the quantities a1(aref
1 ) and a2(aref

2 ) are
computed from g(r) and gref(r) that are obtained from
equation (13) with λ = 1 and λ = 0, respectively. An
important difference between RFA and RHNC becomes clear
at this point. In the RFA, the bridge function bref

λ (r) is
evaluated functionally from equation (14) with the actual
density ρgλ(r) (and not the reference density ρgref(r)).
Therefore, the RHNC assumption that the bridge function does
not vary much from the reference system to the actual one
becomes greatly relaxed within the RFA. For example, on the
level of bulk integral equations, the RFA allows the description
of complete drying for an attractive fluid close to a hard wall
(involving long-ranged bridge functions) which is impossible
within RHNC [14].

This improved treatment of the difficult term �a3 is
fully consistent within the reference functional approximation.
In this respect, note that since �FB,ref is the increment of
the bridge functional within the same one-parameter family
{ρgλ(r); 0 � λ � 1}, g(r) and gref(r) should be computed
with the same, consistent, family of bridge functions bref

λ (r),
in the closure (13). For instance, using an approximate
gref(r), such as the Percus–Yevick one, would violate this,
since gRHNC(r) and gPY(r) cannot be linked through a unique
path. For instance, bPY(r) does not correspond to bref

λ=0(r) =
β δFB,ref[ρ(r)]

δρ(r)
|ρgPY(r). A second condition is that gref(r) should

also be consistent with aref. The principle of minimal free
energy and the equality of the ‘energy’ and ‘virial’ route to
the equation of state requires that aref is computed through
the virial route from gref (see below). One final remark here
concerns the result obtained by using homogeneous densities
in the RFA functional (see equations (B1)–(B2) in [10]). The
last term then evidently vanishes: �FB,ref[ρ(r) = ρ] =
0, the other terms being given by the HNC bulk functional
with RHNC structural quantities; this was termed by Lado an
‘HNC-type’ approximation. �FB,ref is actually non-zero when
used in the RHNC or RHNC/RFA contexts. The accuracy of
these different treatments is then expected to improve in the
order HNC-type → RHNC → RHNC/RFA.

2.3. Relation with Lado’s criterion

From this interpretation of �FB,ref, the meaning of the
criterion ∂

∂d �FB,ref = 0 (equation (9)) can be inferred by
following Lado’s variational interpretation of the free energy
functional [16]: it should be stationary both with respect to
variations δg(r) at fixed d and with respect to the variation
of the reference system diameter, δd , and hence δgref(r) and
δbref(r). This constraint on the variational functional makes
it that the Helmholtz relation is obeyed at the minimum and
the ‘energy’ and ‘virial’ pressure pE and pvir are equal (see
appendix A). By considering aRFA as a functional of g(r),

gref(r) and bref(r) and a function of d one collects in the
total variation δaRFA the contributions of δg(r) at fixed gref(r),
those of δgref(r), and the explicit variation through δd affecting
�FB,ref:

δaRFA = δaref[gref] + ρ

2

∫
dr [c(r) − h(r)

+ ln(g(r) exp(βφ(r))) − b(r)]δg(r)

− ρ

2

∫
dr[cref(r) − href(r) + ln(gref(r) exp(βφref)(r))

− bref(r)]δgref(r) + δd
∂

∂d
�FB,ref

∣∣∣∣
g,gref

. (18)

Since aref is assumed exact for all values of d , it is stationary
for the true gref(r). In the subsequent two terms, b(r) and
bref(r) in the integrands follow from the functional derivatives
of �FB,ref with respect to g(r) and gref(r). The integrands
in turn vanish identically since g(r) and gref(r) obey the
RHNC closure (13) with λ = 1 and λ = 0, respectively.
Minimization of the free energy per particle with respect to
the hard-sphere diameter is thus equivalent to minimizing the
explicit dependence of �FB,ref, which is the criterion (9).
The corresponding minimization using the approximate �a3

in equation (17) gives Lado’s criterion [16]:

∫
dr(g(r) − gref(r))

∂bref(r, d)

∂d
= 0. (19)

We now present some calculations illustrating the formal
results of this section.

3. Results

3.1. Optimum diameter

We consider here the determination of the optimum diameter
from the minimization of the free energy, equation (18), and
from the criterion (9)—this will illustrate also some technical
aspects of the method. While the two criteria are formally
equivalent, they might give different results for several reasons.
The first one is related to the fact that the parameterized
expression of aref used in practice, such as the Carnahan–
Starling aref

CS [22] one or that of Erpenbeck and Wood [23], aref
EW,

may not be strictly consistent with gref(r) (the corresponding
value obtained from the integration of the virial pressure will
be labeled as aref

EOZ). On the other hand, the free energy can
be rather sensitive to the numerical details, such as the mesh
size in the direct and reciprocal space, etc. An illustration is
given in figure 1 which shows ∂

∂d �FB,ref|g,gref and the excess
free energy aRFA (using different expressions for aref) versus
the reference HS diameter for the Lennard-Jones potential
φ(r) = 4ε[( σ

r )12 − ( σ
r )6] (highest density, ρ∗ ≡ ρσ 3 = 0.9,

for T ∗ ≡ kT
ε

= 1 in figure 2). aRFA should be minimal
for the optimum diameter, i.e. when ∂

∂d �FB,ref|g,gref vanishes.
We observe that the vanishing of ∂

∂d �FB,ref|g,gref is much less
sensitive to such details than the free energy itself, as already
pointed out by Lado for the original RHNC. In the examples
shown, the minimum of aRFA occurs at higher values of d ,
when one uses aref

CS or aref
EW. For comparison, the simpler Lado

4
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Figure 1. Determination of the optimum diameter from the free energy minimum and from criterion (9) for the Lennard-Jones fluid. (a) The
three curves correspond from top to bottom to aref computed from aref

EOZ, aref
EW and aref

CS. The nearly vertical line shows ∂

∂d �FB,ref|g,gref

(equation (9)). (b) Effect of �FB,ref on the free energy minimum. The line with the full circles represents the excess free energy computed
from aref

EOZ and the line with the open circles corresponds to equation (16) without �FB,ref. The vertical solid line is as in (a) and the second
solid line corresponds to �FB,ref/2. d is the HS diameter in units of the Lennard-Jones parameter σ .

criterion (19) gives an optimum diameter d = 0.9948 with
the bridge function of Labik et al [24]. Using in the same
criterion FMT bridge functions, one obtains different values
depending on the choice of the input correlation functions:
we find d = 1.006 with b[g(r)] and d = 1.0047 with
b[gref(r)]. The corresponding excess free energies (with
aref

EW) are, respectively, a = −2.462,−2.452 and −2.448.
The difference can be greater when g(r) starts to deviate
significantly from gref(r). This ambiguity in the choice of the
input g(r) is removed when �a3 is computed from �FB,ref

and not from the approximate RHNC expression (17). In
this respect, it is important to note that �FB,ref is a small
contribution to the value of the free energy (for the optimum
diameter d = 1.0032, we find �FB,ref = 0.002 when the
excess free energy is a = −2.423) but its variation with d
is crucial: as shown in figure 1(b), the flat variation of a(d)

in the region of the minimum results from strong and nearly
opposite variations of �FB,ref and its counterpart (a−�FB,ref).
This means that a good treatment of the non-local term in
the free energy is not so much important for the free energy
itself but for obtaining the correct optimum diameter. In
some instances, a small uncertainty in this value can have a
significant impact on thermodynamic quantities such as the
pressure or the chemical potential. Finally, it is not obvious
that the best results are obtained with the route that respects
the consistency between the virial pressure and the pressure
obtained from the density derivative of the free energy. We
find in some cases slightly better results from the free energy
minimum computed with aref

EW rather than with aref
EOZ (we then

lose the consistency with the criterion (9)).

3.2. Thermodynamic properties

In [14], several thermodynamic quantities were computed
within the RFA. The virial pressure and the internal energy

Figure 2. Excess chemical potential of the Lennard-Jones fluid at
various temperatures: T ∗ = 2.74, 1.35, 1 and 0.75 from top to
bottom. The solid lines are the predictions of the integral equation in
the reference functional approximation. The symbols are the
computer simulations data ([25] and references therein).

isotherms were in particular found to be in very good
agreement with simulation. We complement this by showing
in figure 2 the excess chemical potential computed from the
thermodynamic relation

βμex = a + βp/ρ − 1. (20)

As shown in appendix A, this expression can be used
consistently with the RFA route. Again, we observe a

5
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Table 1. Excess chemical potential of the Lennard-Jones fluid at
T ∗ = 0.75. For the Monte Carlo data see [25] and references therein.
βμ

ex,RHNC
1 and βμ

ex,RHNC
2 are computed from equations (11), (17)

and (20) by using b(r) and bref(r), respectively, whereas βμex,(1)

denotes the chemical potential from the test particle route
(equation (A.4)). Values between parentheses are the optimum
diameters.

ρσ 3 βμex βμ
ex,RHNC
1 βμ

ex,RHNC
2 βμex,(1) βμex,MC

0.81 −5.624 −5.647 −5.654 −5.475 −5.701
(1.0177) (1.0190) (1.0194) (1.0177)

0.83 −5.215 −5.228 −5.228 −5.077 −5.303
(1.0185) (1.0195) (1.0196) (1.0185)

0.85 −4.748 −4.738 −4.722 −4.633 −4.831
(1.0194) (1.0199) (1.0195) (1.0194)

0.87 −4.207 −4.164 −4.137 −4.124 −4.227
(1.0201) (1.0200) (1.0193) (1.0201)

0.89 −3.508 −3.498 −3.461 −3.435 −3.638
(1.0190) (1.0197) (1.0188) (1.0190)

very good behavior of the RFA isotherms even at rather
low temperature and high density (the last point (ρ∗ =
0.89) on the T ∗ = 0.75 isotherm is deep inside the
liquid phase). A comparison of the RFA, RHNC and the
previously suggested [14] test particle route (see appendix A,
equation (A.4)) can be made from table 1 which gives details
for the lowest isotherm (T ∗ = 0.75) in figure 2. The RFA and
RHNC results are of similar quality with, here, the expected
slight advantage for the former (this can, however, be offset
by the greater numerical complexity of �FB,ref in comparison
with the approximate RHNC �a3). Quite generally, the
chemical potential computed from both routes is found to be
more accurate than the one obtained from the test particle
route. The latter is, of course, the only one at our disposal
in the RFA context for computing insertion free energies in an
inhomogeneous fluid [14].

We conclude this section by noting that one—at least
formal—advantage of the RFA over the standard RHNC is
the removal of the ambiguity relative to the choice of the
correlation function to be used in the computation of the bridge
function b[g(r)]. At least for the LJ fluid the RHNC remains
sufficiently accurate for practical purposes and is, of course,
much simpler.

3.3. Short range Yukawa fluid

As an illustration for a more extreme situation, we show in
figure 3 the coexistence curve for a hard-core Yukawa fluid
with a short range attraction. In this model, the interaction
potential is given by

u(r) = ∞, r � σ ;

u(r) = −|ε|e−λ(r/σ−1)

r/σ
, r > σ.

(21)

The value λ = 7 appears to be appropriate for modeling the
effective interaction in some soft matter fluids. It has been
used in [26] to test the quality of various integral equations,
including that labeled MHNC (that is, the RHNC with PY

Figure 3. Liquid–vapor coexistence of the hard-core Yukawa fluid
with λ = 7. The crosses are the computer simulation data from [27].
The triangles correspond to the RFA free energy (equation (16)). The
squares correspond to predictions of SCOZA and the open circles are
results of MHNC (data from [26]).

input). Note that recent simulation data by Duda et al [27]
corrected the previous ones, especially in the gas branch of
the coexistence curve where the integral equations seemed to
fail (data for λ = 4 are given in [28]). We observe in the
figure the very good accuracy of the RFA, both in the full
version (equation (16)) and in the simplified—‘RHNC’—one
(equation (17)). Away from the critical point, our results
are at least as good as those from the SCOZA [31]. Close
to the critical point, the RFA encounters a domain of non-
convergence typical for HNC-type closures (see also [15, 29]
for possible ways to overcome this particular non-convergence
problem). A similar behavior of the latter and the RHNC
integral equations with parameterized HS bridge functions [24]
has been observed for an even shorter range in [30]. The
similar behavior observed here, at variance with the MHNC
route, illustrates the sensitivity of the free energy to the various
ingredients (PY input for g(r), b(r) and aref in the MHNC
case).

Finally, we show in figure 4 the pressure computed for an
even shorter range λ = 9. We observe again an improvement
upon the MHNC results.

4. Conclusion

In this work, we have examined the calculation of the free
energy of a homogeneous fluid in the reference functional
approach. Besides its interest for the study of bulk properties,
the bulk free energy is also an important input in the study of
inhomogeneous fluids. For the test particle limit, we derived
the connection of the excess free energy functional of the RFA
(equation (7)), valid for a general inhomogeneous situation,
with the formally exact expression of the bulk free energy
in terms of the pair correlation function (equation (10)). In

6
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Figure 4. Equation of state for the hard-core Yukawa fluid with
λ = 9 at various temperatures and ρσ 3 = 0.7. The crosses are the
simulation results (data from [26]). The triangles correspond to RFA
virial pressure. Squares are the SCOZA predictions and the open
circles are the MHNC predictions (data from [26]).

particular, this leads to an improved calculation of the non-
local term �a3 in the standard reference hypernetted chain
RHNC theory. The link with the variational RHNC free energy
clarifies the meaning of the optimization criterion recently
proposed. The resulting free energy and test particle consistent
integral equation involve no other approximation than the
use of a reference bridge functional instead of the exact but
unknown one. Regardless of the particular choice of the
reference bridge functional, the bulk thermodynamics obtained
from the solutions of the RFA closure features consistency
between the virial and internal energy route, as in the RHNC
closure. The overall quality of the results is, however,
determined by the particular input of the reference free energy
functional. In this respect, the use of the fundamental measure
functional for hard spheres gives excellent results as has been
illustrated for the standard Lennard-Jones fluid and the short
range attractive Yukawa fluid.

The results are found to improve upon the already accurate
RHNC approach and are comparable to those of elaborate
closures of the Ornstein–Zernike equation such as the SCOZA.
The improved treatment of the non-local term as in this RFA
route should prove to be useful in practice for some non-
standard interaction potentials, such as those encountered in
the one-component description of soft matter fluids.

Appendix A

RHNC free energy

aref should in principle be computed by integrating the virial
pressure. A much simpler (though slightly inconsistent)
method is to use aref

CS computed from the parameterized

Carnahan–Starling equation of state [22] as

aref
CS(η) = ln(ρ�3) − 1 + η(4 − 3η)

(1 − η)2
(A.1)

or the Erpenbeck–Wood expression given in [23]. The terms a1

and a2 in the exact expression for the reduced bulk free energy
per particle [6] (see equation (10)) are

a1 = − 1
2ρ

∫
dr[ 1

2 h2(r) + h(r) − g(r) ln(g(r) exp(βφ(r)))]

a2 = − 1

2ρ

∫
dk

(2π)3
[ln(1 + ρh̃(k)) − ρh̃(k)]

where h(r) = g(r) − 1 is the total correlation function and
h̃(k) its Fourier transform. The corresponding quantities for
the reference system are computed from the same expressions,
using href(r), h̃ref(k) and φref(r).

Chemical potential: comparison between test particle and
RFA free energy route

Within the theoretical framework presented in this paper, the
excess (over ideal) chemical potential μex can be calculated in
two different ways.

(1) Test particle route. As described in section 2, the total
excess free energy functional is given by the sum of
the HNC functional and the bridge functional, Fex =
F (2) + FB. The pair correlation function follows from
minimizing the grand free energy in the presence of one
test particle (with the Ornstein–Zernike relation acting as a
constraint). The excess chemical potential μex is obtained
as the grand free energy of insertion of that test particle
and is given by the following exact relation [14]:

βμex = βμex,HNC[h(r)]−ρ

∫
dr g(r) b(r)+β FB[ρg(r)]

(A.2)
with b(r) = β δFB

δρ(r)
|ρ(r)=ρg(r). Here, the HNC functional

for the chemical potential is given by the well-known
expression

βμex,HNC[h(r)] = ρ

2

∫
dr [h(r)(h(r) − c(r)) − 2c(r)].

(A.3)
In [14], the reference functional approximation FB ≈
FB,ref was used directly in equation (A.2) to obtain the
first approximation for μex:

βμex,(1) = βμex,HNC[h(r)] − ρ

×
∫

dr g(r) b(r) + β FB,ref[ρg(r)] (A.4)

with b(r) = β δFB,ref

δρ(r)
|ρ(r)=ρg(r).

(2) RFA energy route. In this route, the excess chemical
potential is obtained through the thermodynamic relation

βμex = ∂(aρ)/∂ρ (A.5)

which could be used directly by taking the numerical
derivative of the RFA free energy. This is formally
equivalent to the relation

βμex = a + βp/ρ − 1 (A.6)

7
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the pressure being given by

βpE/ρ = 1 + ρ∂a/∂ρ. (A.7)

In principle, one may also use the alternative virial
equation

βpvir/ρ = 1 − 2π

3
ρ

∫
r 3βφ′(r)g(r) dr. (A.8)

In an exact theory, pE = pvir and accordingly
equation (A.6) for μex should yield the same result as
equation (A.5). However, this is not necessarily true with
approximate theories, as is well known. Now, it has been
shown [16] that the constraint on the variational RHNC
free energy forces the equality of pE and pvir and hence
of the chemical potentials from equations (A.5) and (A.6).
Indeed, the derivative of the free energy with respect to ρ

yields the virial pressure plus an extra contribution related
to the bridge terms, which vanishes for the optimum
free energy. One key step in taking the derivatives with
respect to ρ is the change of variables x = rρ1/3 and
the use of distribution functions g∗(x) = g(xρ−1/3) =
exp(−βφ(xρ−1/3) + h(x) − c(x) − b(x)) in which the
dependence on ρ is transferred in the potential (see also
equations (51)–(53) in [33] and the appendix of [34]). The
contribution due to φ(xρ−1/3) gives the virial pressure
pvir. As for the derivation of equation (18) the sum of
the other contributions arising from δg∗(x) and δg∗,ref(x)

vanish because of the closures. The only remaining
variation ∂

∂ρ
�FB,ref|g,gref differs from ∂

∂d �FB,ref|g,gref only

by a constant factor, because all the terms entering FB,ref

depend only on the packing fraction η = π
6 ρd3, and not

on ρ separately, once the scaling of the distance has been
made (this can be checked explicitly from the definition
of FB,ref in equation (6)). It thus vanishes because of
the constraint (9). The same arguments apply thus for
showing the equality of the virial and energy routes for
the chemical potential with the RFA free energy. From
a practical point of view, equation (A.6) should be more
convenient since it is free from the numerical derivative
with respect to ρ.

(3) Comparison of the two expressions. From the explicit
expression for the excess free energy per particle a =
a1 + a2 + a(0)

3 + �FB,ref/2 and equation (A.5), one may
alternatively write the chemical potential as

βμex,(2) ≡ βμex = βμex,HNC[h] − βμex,HNC[href]
− ρ

∫
dr (g(r) b(r) − gref(r) bref(r))

+ βμex,ref + β

2
�FB,ref + βρ

2

∂

∂ρ
�FB,ref (A.9)

with the definition βμex,ref = ∂(arefρ)/∂ρ. Note that
in obtaining the above equation derivatives like ∂h

∂ρ
δ
δh (·)

and ∂d
∂ρ

∂
∂d (·) vanish by virtue of the RFA closure and the

optimization criterion. However, since FB,ref carries an
explicit dependence on the bulk density, a corresponding
derivative term appears.

Since in practice one can dispose of very precise
functionals for the reference HS sphere which, however,
are not exact, there is a slight difference between μex,ref

and the test particle result:

�βμex,ref = βμex,ref −
(

βμex,HNC[href(r)]

− ρ

∫
dr gref(r) bref(r) + FB,ref[ρgref(r)]

)
. (A.10)

Using this definition, the difference between the two
approximations in equations (A.4) and (A.9) for the excess
chemical potential is therefore given by

β(μex,(2) − μex,(1)) = −β

2
�FB,ref + �βμex,ref

+ βρ

2

∂

∂ρ
�FB,ref. (A.11)

Again, for the exact reference system bridge functional
FB,ref, �μex,ref = 0 by virtue of equation (A.2). Our
numerical calculations show that this term and also
�FB,ref/2 are close to zero for the hard-sphere diameter
of the reference system determined according to the
criterion (9). For higher densities, the density derivative of
�FB,ref becomes a noticeable contribution (see table 1).

Appendix B

Bridge function in the test particle limit of the RFA

We now summarize the ingredients of the integral equation
resulting from the RFA in the test particle limit (termed RHNC-
FMF in previous work). Since most of our results have been
obtained with the modified FMT version given in [18], we
give here the corresponding expressions (for other versions
see [17–20]). The free energy density 	({nα}) consistent with
the BMCSL equation [32] (superscript CS) contains scalar and
vector contributions:

	CS[{nα(r)}] = 	S(CS)[{nα(r)}] + 	V(CS)[{nα(r)}] (B.1)

	S(CS) = −n0 ln(1 − n3) + n1n2

1 − n3

+ 1

36π

[
1

n2
3

ln(1 − n3) + 1

n3(1 − n3)2

]
n3

2 (B.2)

	V(CS) = −nV1 · nV2

1 − n3
− 1

12π

[
1

n2
3

ln(1 − n3) + 1

n3(1 − n3)2

]

× n2nV2 · nV2. (B.3)

The weighted densities are computed in Fourier space as
ñα(k) = ∑

i ρi(k)ω̃
(α)

i (−k) where the Fourier transforms of
the weight functions ω̃

(α)
i are

ω̃
(q)

i (k)

R(q)

i

= sin(k Ri )

k Ri
, q = 0, 1, 2

ω̃
(3)

i (k)

R(3)

i

= 3
sin(k Ri) − k Ri cos(k Ri)

(k Ri)3

ω̃
(V2)

i (k) = (−1)
1
2 kω̃

(3)

i (k), ω̃
(V1)

i (k) = ω̃
(V2)
i (k)

4π Ri
(B.4)
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with R(q)

i = 1, Ri , Si and Vi for q = 0, 1, 2 and 3,
respectively (Ri , Si and Vi denote the hard-sphere radius, the
surface area and the volume of the sphere of species i ). The
bridge functions are computed from

bi j[{ρi (r); r}] = β(μ
ex,HS
i [{ρi gi j(r); r}] − μ

ex,HS
i ({ρi }))

+
∑

k

ρkc(2),HS
ik ⊗ hkj (r) (B.5)

with

c(1)
i (r) = −βμ

ex,HS
i [{ρi(r)}; r]

= −
∫

dr′ ∑

α

μα[{nα(r ′)}; r ]ω(α)
i (r′ − r)

μα[{nα(r)}] = ∂	

∂nα

and

−c(2),HS
i j (r) =

∑

α,γ

	α,γ

∫
dr′ω(α)

i (r′)ω(γ )

j (r′ − r)

−c̃(2)
i j (k) =

∑

α,γ

	α,γ ω̃
(α)
i (k)ω̃

(γ )

j (−k)

	α,γ =
[

∂2	

∂nα∂nγ

]

{nα,0}
.

(B.6)
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